Optimized Doppler Estimation and Symbol Synchronization for Mobile M-ary Spread Spectrum Underwater Acoustic Communication

Author:

Yang Guang,Zhou Feng,Qiao Gang,Zhao Yunjiang,Liu Yufei,Lu Yinheng,He Yuanan

Abstract

In mobile underwater acoustic (UWA) communications, the Doppler effect causes severe signal distortion, which leads to carrier frequency shift and compresses/broadens the signal length. This situation has a more severe impact on communication performance in the case of low signal-to-noise ratio and variable-speed movement. This paper proposes a non-data-aided Doppler estimation method for M-ary spread spectrum UWA communication systems in mobile scenarios. The receiver uses the spread spectrum codes dedicated to transmitting signals with different frequency offsets as local reference signals. Correlation operations are performed symbol by symbol with the received signal. The decoding and Doppler estimation of the present symbol are achieved by searching the correlation maximum in the code domain and frequency domain. The length of the current symbol is corrected for the next symbol synchronization using the estimated Doppler coefficient. To optimize the process of Doppler estimation and symbol synchronization, a heuristic search method is used. By adjusting the Doppler factor search step size, setting the threshold value, and using the Doppler factor estimation of the previous symbol, the search range can be significantly reduced and the computational complexity decreased. The Fisher-Yates shuffle algorithm is used to traverse the search range to ensure reliability of the results. Simulation results show that enlarging the frequency-domain search step size in some degree does not affect the decoding accuracy. On 15 May 2021, a shallow-water mobile UWA spread spectrum communication experiment was conducted in Weihai, China. The horizontal distance between the transmitter and the receiver is 3.7–4.0 km, and the communication rate is 41.96 bits per second. The transmitting ship moves at a speed of 0–3 m/s, and the bit error rate (BER) is lower than 1e−3, which is better than that of the sliding correlation despreading method with average Doppler compensation.

Funder

National Natural Science Foundation of China

Science and Technology on Underwater Information and Control Laboratory

State Administration for Science, Technology and Industry for National Defense

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3