Time-Scale Decomposition Techniques Used in the Ship Path-Following Problem with Rudder Roll Stabilization Control

Author:

Ren Ru-Yi,Zou Zao-JianORCID,Wang Jian-Qin

Abstract

The motion control of a surface ship based on a four degrees of freedom (4-DoF) (surge, sway, roll, and yaw) maneuvering motion model is studied in this paper. A time-scale decomposition method is introduced to solve the path-following problem, implementing Rudder Roll Stabilization (RRS) at the same time. The control objectives are to let the ship to track a predefined curve path under environmental disturbances, and to reduce the roll motion at the same time. A singular perturbation method is used to decouple the whole system into two subsystems of different time scales: the slow path-following subsystem and the fast roll reduction subsystem. The coupling effect of the two subsystems is also considered in this framework of analysis. RRS control is only possible when there is the so-called bandwidth separation characteristic in the ship motion system, which requires a large bandwidth separation gap between the two subsystems. To avoid the slow subsystem being affected by the wave disturbances of high frequency and large system uncertainties, the L1 adaptive control is introduced in the slow subsystem, while a Proportion-Differentiation (PD) control law is adopted in the fast roll reduction subsystem. Simulation results show the effectiveness and robustness of the proposed control strategy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3