Design Longitudinal Control System Using Suitable T-Foil Modeling for the Offshore Wind Power Operation and Maintenance Vessel with Severe Sea States

Author:

Yuan Jia1,Liu Zhen1,Geng Hua1,Zhang Songtao2,Liang Lihua2,Zhao Peng3

Affiliation:

1. School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China

2. College of Intelligent System Science and Engineering, Harbin Engineering University, Harbin 150001, China

3. Department of Transportation and Vehicle Engineering, Tangshan University, Tangshan 063000, China

Abstract

In order to reduce the offshore wind power operation and maintenance vessel motion induced by severe sea states, a suitable stabilizer with the ship based on linear quadratic regulator strategy is proposed in this paper. First of all, the dynamics of the ship motion model are established to study the longitudinal control system. The six degrees of freedom nonlinear motion model and nonlinear coupled longitudinal motion (heave and pitch) model are described in detail in this paper. Secondly, this work presents matching suitability between the T-foil and the operation and maintenance vessel. Therefore, the most suitable installation position and the optimum strut’s height of T-foil are determined by meshing the ship hull model, setting the water channel, and a series of corresponding computer fluid dynamic simulation. Following that, the linear quadratic regulator controller is studied with active longitudinal control system based on the suitable T-foil. Furthermore, a longitudinal control system is built, including free vessel module and the suitable T-foil stabilizer-based proposed controller module. Finally, the simulation results indicate that the designed T-foil and the longitudinal control system are feasible and effective to ensure the heave and pitch motion reduction based on the proposed controller.

Funder

Science and Technology Project of Hebei Education Department

Natural Science Foundation of Hebei Province of China

Innovation Fund Project of Hebei University of Engineering

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3