Readout Circuits for Capacitive Sensors

Author:

Yoo Yongsang,Choi Byong-Deok

Abstract

The development of microelectromechanical system (MEMS) processes enables the integration of capacitive sensors into silicon integrated circuits. These sensors have been gaining considerable attention as a solution for mobile and internet of things (IoT) devices because of their low power consumption. In this study, we introduce the operating principle of representative capacitive sensors and discuss the major technical challenges, solutions, and future tasks for a capacitive readout system. The signal-to-noise ratio (SNR) is the most important performance parameter for a sensor system that measures changes in physical quantities; in addition, power consumption is another important factor because of the characteristics of mobile and IoT devices. Signal power degradation and noise, which degrade the SNR in the sensor readout system, are analyzed; circuit design approaches for degradation prevention are discussed. Further, we discuss the previous efforts and existing studies that focus on low power consumption. We present detailed circuit techniques and illustrate their effectiveness in suppressing signal power degradation and achieving lower noise levels via application to a design example of an actual MEMS microphone readout system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference62 articles.

1. Towards the trillion sensors market

2. Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies;Winncy,2014

3. A high-resolution area-change-based capacitive MEMS tilt sensor

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3