Levitation Characteristics Analysis of a Diamagnetically Stabilized Levitation Structure

Author:

Cheng Shuhan,Li XiaORCID,Wang Yongkun,Su YufengORCID

Abstract

A diamagnetically stabilized levitation structure is composed of a floating magnet, diamagnetic material, and a lifting magnet. The floating magnet is freely levitated between two diamagnetic plates without any external energy input. In this paper, the levitation characteristics of a floating magnet were firstly studied through simulation. Three different levitation states were found by adjusting the gap between the two diamagnetic plates, namely symmetric monostable levitation, bistable levitation, and asymmetric monostable levitation. Then, according to experimental comparison, it was found that the stability of the symmetric monostable levitation system is better than that of the other two. Lastly, the maximum moving space that allows the symmetric monostable levitation state is investigated by Taguchi method. The key factors affecting the maximum gap were determined as the structure parameters of the floating magnet and the thickness of highly oriented pyrolytic graphite (HOPG) sheets. According to the optimal parameters, work performance was obtained by an experiment with an energy harvester based on the diamagnetic levitation structure. The effective value of voltage is 250.69 mV and the power is 86.8 μW. An LED light is successfully lit on when the output voltage is boosted with a Cockcroft–Walton cascade voltage doubler circuit. This work offers an effective method to choose appropriate parameters for a diamagnetically stabilized levitation structure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3