Pyrolytic Graphite for an In-Plane Force Study of Diamagnetic Levitation: A Potential Microdetector of Cracks in Magnetic Material

Author:

Liu Runze1,Yang Wenjiang1ORCID,Xiang Hongjun1,Zhao Peng1,Deng Fuwen1,Yan Juzhuang1

Affiliation:

1. School of Astronautics, Beihang University, Beijing 100191, China

Abstract

The diamagnetic levitation technique can be applied in non-destructive testing for identifying cracks and defects in magnetic materials. Pyrolytic graphite is a material that can be leveraged in micromachines due to its no-power diamagnetic levitation on a permanent magnet (PM) array. However, the damping force applied to pyrolytic graphite prevents it from maintaining continuous motion along the PM array. This study investigated the diamagnetic levitation process of pyrolytic graphite on a permanent magnet array from various aspects and drew several important conclusions. Firstly, the intersection points on the permanent magnet array had the lowest potential energy and validated the stable levitation of pyrolytic graphite on these points. Secondly, the force exerted on the pyrolytic graphite during in-plane motion was at the micronewton level. The magnitude of the in-plane force and the stable time of the pyrolytic graphite were related to the size ratio between it and the PM. During the fixed-axis rotation process, the friction coefficient and friction force decreased as the rotational speed decreased. Smaller-sized pyrolytic graphite can be used for magnetic detection, precise positioning and other microdevices. The diamagnetic levitation of pyrolytic graphite can also be used for detecting cracks and defects in magnetic materials. We hope this technique will be used in crack detection, magnetic detection and other micromachines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3