Knowledge Graph Representation Learning-Based Forest Fire Prediction

Author:

Chen JiahuiORCID,Yang YiORCID,Peng LingORCID,Chen Luanjie,Ge XingtongORCID

Abstract

Forest fires destroy the ecological environment and cause large property loss. There is much research in the field of geographic information that revolves around forest fires. The traditional forest fire prediction methods hardly consider multi-source data fusion. Therefore, the forest fire predictions ignore the complex dependencies and correlations of the spatiotemporal kind that usually bring valuable information for the predictions. Although the knowledge graph methods have been used to model the forest fires data, they mainly rely on artificially defined inference rules to make predictions. There is currently a lack of a representation and reasoning methods for forest fire knowledge graphs. We propose a knowledge-graph- and representation-learning-based forest fire prediction method in this paper for addressing the issues. First, we designed a schema for the forest fire knowledge graph to fuse multi-source data, including time, space, and influencing factors. Then, we propose a method, RotateS2F, to learn vector-based knowledge graph representations of the forest fires. We finally leverage a link prediction algorithm to predict the forest fire burning area. We performed an experiment on the Montesinho Natural Park forest fire dataset, which contains 517 fires. The results show that our method reduces mean absolute deviation by 28.61% and root-mean-square error by 53.62% compared with the previous methods.

Funder

Ningxia Key R&D Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System

2. Improved Prediction of Forest Fire Risk in Central and Northern China by a Time-Decaying Precipitation Model

3. A Data Mining Approach to Predict Forest Fires Using Meteorological Data http://www3.dsi.uminho.pt/pcortez/fires.pdf

4. Using r-trees for interactive visualization of large multidimensional datasets;Giménez;Proceedings of the International Symposium on Visual Computing,2010

5. Lightning-caused forest fire risk in Northwestern Ontario, Canada, is increasing and associated with anomalies in fire weather

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3