Improved Prediction of Forest Fire Risk in Central and Northern China by a Time-Decaying Precipitation Model

Author:

Chen Jiajun,Wang Xiaoqing,Yu Ying,Yuan Xinzhe,Quan Xiangyin,Huang Haifeng

Abstract

With the increase in extreme climate events, forest fires burn in much larger areas. Therefore, it is important to accurately predict forest fire frequencies. Precipitation is an important factor that affects the probability of future forest fires. Previous models used average precipitation values, but the attenuation of precipitation was not considered. In this study, a time-decaying precipitation algorithm was used to calculate the comprehensive precipitation index. This method can better represent the effect of precipitation in predicting the occurrence of forest fires. Moreover, observed fire spots were converted into a continuous density of fire spots. The structure of the prediction model is more realistic, which is conducive to obtaining higher-precision prediction results. Additionally, the support vector machine (SVM) regression model was used to construct a forest fire warning model. When the comprehensive precipitation index was compared with the average precipitation value, the accuracy of the four forest areas in central and northern China in the test set was improved by approximately 10%. The findings are relevant to forest ecologists and managers for future mitigation of forest fires, and also for successful prediction of other fire-prone areas.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3