Estimation of Soil Organic Carbon Content in Coastal Wetlands with Measured VIS-NIR Spectroscopy Using Optimized Support Vector Machines and Random Forests

Author:

Song JingruORCID,Gao Junhai,Zhang Yongbin,Li Fuping,Man WeidongORCID,Liu Mingyue,Wang Jinhua,Li Mengqian,Zheng Hao,Yang Xiaowu,Li Chunjing

Abstract

Coastal wetland soil organic carbon (CW-SOC) is crucial for both “blue carbon” and carbon sequestration. It is of great significance to understand the content of soil organic carbon (SOC) in soil resource management. A total of 133 soil samples were evaluated using an indoor spectral curve and were categorized into silty soil and sandy soil. The prediction model of CW-SOC was established using optimized support vector machine regression (OSVR) and optimized random forest regression (ORFR). The Leave-One-Out Cross-Validation (LOO-CV) method was used to verify the model, and the performance of the two prediction models, as well as the models’ stability and uncertainty, was examined. The results show that (1) The SOC content of different coastal wetlands is significantly different, and the SOC content of silty soils is about 1.8 times that of sandy soils. Moreover, the characteristic wavelengths associated with SOC in silty soils are mainly concentrated in the spectral range of 500–1000 nm and 1900–2400 nm, while the spectral range of sandy soils is concentrated in the spectral range of 600–1400 nm and 1700–2400 nm. (2) The organic carbon prediction model of silty soil based on the OSVR method under the first-order differential of reflectance (R′) is the best, with the Adjusted-R2 value as high as 0.78, the RPD value is much greater than 2.0 and 5.07, and the RMSE value as low as 0.07. (3) The performance of the OSVR model is about 15~30% higher than that of the support vector machine regression (SVR) model, and the performance of the ORFR model is about 3~5% higher than that of the random forest regression (RFR) model. OSVR and ORFR are better methods of accurately predicting the CW-SOC content and provide data support for the carbon cycle, soil conservation, plant growth, and environmental protection of coastal wetlands.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3