Collaborative Utilization of Sentinel-1/2 and DEM Data for Mapping the Soil Organic Carbon in Forested Areas Based on the Random Forest

Author:

Wang Zeqiang123,Zhang Dongyou12,Xu Xibo3,Lu Tingyu12,Yang Guanghui4

Affiliation:

1. College of Geographical Sciences, Harbin Normal University, Harbin 150025, China

2. Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China

3. Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China

4. Jilin Emergency Warning Information Dissemination Center, Changchun 130062, China

Abstract

Optical remote sensing data are widely used for constructing soil organic carbon (SOC) mapping models. However, it is challenging to map SOC in forested areas because atmospheric water vapor affects the results derived from optical remote sensing data. To address this issue, we utilized Sentinel-1, Sentinel-2, and digital elevation model (DEM) data to obtain a comprehensive feature set (including S1-based textural indices, S2-based spectral indices, and DEM-derived indices) to map the SOC content in forested areas. The features set were the predictor variables, and the measured SOC content was the dependent variable. The random forest algorithm was used to establish the SOC model. The ratio of performance to inter-quartile range (RPIQ) was 2.92 when the S2-based spectral indices were used as predictor variables. When the comprehensive feature set was utilized as the model input, the model achieved an RPIQ of 4.13 (R2 = 0.91, root mean square error (RMSE) = 9.18), representing a 41.44% improvement in model accuracy. The average SOC content in the Greater Khingan Mountains was 43.75 g kg−1. The northern and southwestern parts had higher SOC contents (>54.93 g kg−1), while the southeastern and northwestern parts had lower contents (<39.83 g kg−1). This discrepancy was primarily attributed to agricultural activities. The results indicate that using a comprehensive feature set and the random forest algorithm is a reliable approach for estimating the spatial distribution of the SOC content in forested areas and is suitable for forest ecology and carbon management studies.

Funder

Nation Nature Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Key Laboratory of Environmental Change and Natural Disaster of the Ministry of Education, Beijing Normal University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3