Generalized LiDAR Intensity Normalization and Its Positive Impact on Geometric and Learning-Based Lane Marking Detection

Author:

Cheng Yi-TingORCID,Lin Yi-ChunORCID,Habib AymanORCID

Abstract

Light Detection and Ranging (LiDAR) data collected by mobile mapping systems (MMS) have been utilized to detect lane markings through intensity-based approaches. As LiDAR data continue to be used for lane marking extraction, greater emphasis is being placed on enhancing the utility of the intensity values. Typically, intensity correction/normalization approaches are conducted prior to lane marking extraction. The goal of intensity correction is to adjust the intensity values of a LiDAR unit using geometric scanning parameters (i.e., range or incidence angle). Intensity normalization aims at adjusting the intensity readings of a LiDAR unit based on the assumption that intensity values across laser beams/LiDAR units/MMS should be similar for the same object. As MMS technology develops, correcting/normalizing intensity values across different LiDAR units on the same system and/or different MMS is necessary for lane marking extraction. This study proposes a generalized correction/normalization approach for handling single-beam/multi-beam LiDAR scanners onboard single or multiple MMS. The generalized approach is developed while considering the intensity values of asphalt and concrete pavement. For a performance evaluation of the proposed approach, geometric/morphological and deep/transfer-learning-based lane marking extraction with and without intensity correction/normalization is conducted. The evaluation shows that the proposed approach improves the performance of lane marking extraction (e.g., the F1-score of a U-net model can change from 0.1% to 86.2%).

Funder

Joint Transportation Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3