Image-Aided LiDAR Extraction, Classification, and Characterization of Lane Markings from Mobile Mapping Data

Author:

Cheng Yi-Ting1ORCID,Shin Young-Ha2,Shin Sang-Yeop1ORCID,Koshan Yerassyl1,Hodaei Mona1,Bullock Darcy1ORCID,Habib Ayman1ORCID

Affiliation:

1. Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA

2. Department of Geoinformation Engineering, Sejong University, Seoul 05006, Republic of Korea

Abstract

The documentation of roadway factors (such as roadway geometry, lane marking retroreflectivity/classification, and lane width) through the inventory of lane markings can reduce accidents and facilitate road safety analyses. Typically, lane marking inventory is established using either imagery or Light Detection and Ranging (LiDAR) data collected by mobile mapping systems (MMS). However, it is important to consider the strengths and weaknesses of both camera and LiDAR units when establishing lane marking inventory. Images may be susceptible to weather and lighting conditions, and lane marking might be obstructed by neighboring traffic. They also lack 3D and intensity information, although color information is available. On the other hand, LiDAR data are not affected by adverse weather and lighting conditions, and they have minimal occlusions. Moreover, LiDAR data provide 3D and intensity information. Considering the complementary characteristics of camera and LiDAR units, an image-aided LiDAR framework would be highly advantageous for lane marking inventory. In this context, an image-aided LiDAR framework means that the lane markings generated from one modality (i.e., either an image or LiDAR) are enhanced by those derived from the other one (i.e., either imagery or LiDAR). In addition, a reporting mechanism that can handle multi-modal datasets from different MMS sensors is necessary for the visualization of inventory results. This study proposes an image-aided LiDAR lane marking inventory framework that can handle up to five lanes per driving direction, as well as multiple imaging and LiDAR sensors onboard an MMS. The framework utilizes lane markings extracted from images to improve LiDAR-based extraction. Thereafter, intensity profiles and lane width estimates can be derived using the image-aided LiDAR lane markings. Finally, imagery/LiDAR data, intensity profiles, and lane width estimates can be visualized through a web portal that has been developed in this study. For the performance evaluation of the proposed framework, lane markings obtained through LiDAR-based, image-based, and image-aided LiDAR approaches are compared against manually established ones. The evaluation demonstrates that the proposed framework effectively compensates for the omission errors in the LiDAR-based extraction, as evidenced by an increase in the recall from 87.6% to 91.6%.

Funder

Joint Transportation Research Program administered by the Indiana Department of Transportation and Purdue University

Publisher

MDPI AG

Reference49 articles.

1. Plankermann, K. (2014). Human Factors as Causes for Road Traffic Accidents in the Sultanate of Oman under Consideration of Road Construction Designs. [Ph.D. Dissertation, Universität Regensburg].

2. Safety sensitivity to roadway characteristics: A comparison across highway classes;Chen;Accid. Anal. Prev.,2019

3. Effect of lane width, shoulder width, and shoulder type on highway safety;Zegeer;State Art Rep.,1987

4. Stein, W.J., and Neuman, T.R. (2007). Mitigation Strategies for Design Exceptions, Federal Highway Administration, Office of Safety.

5. FHWA (2009). Manual on Uniform Traffic Control Devices 2009, US Department of Transportation, Federal Highway Administration.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3