The Eyes of the Gods: A Survey of Unsupervised Domain Adaptation Methods Based on Remote Sensing Data

Author:

Xu MengqiuORCID,Wu MingORCID,Chen KaixinORCID,Zhang ChuangORCID,Guo JunORCID

Abstract

With the rapid development of the remote sensing monitoring and computer vision technology, the deep learning method has made a great progress to achieve applications such as earth observation, climate change and even space exploration. However, the model trained on existing data cannot be directly used to handle the new remote sensing data, and labeling the new data is also time-consuming and labor-intensive. Unsupervised Domain Adaptation (UDA) is one of the solutions to the aforementioned problems of labeled data defined as the source domain and unlabeled data as the target domain, i.e., its essential purpose is to obtain a well-trained model and tackle the problem of data distribution discrepancy defined as the domain shift between the source and target domain. There are a lot of reviews that have elaborated on UDA methods based on natural data, but few of these studies take into consideration thorough remote sensing applications and contributions. Thus, in this paper, in order to explore the further progress and development of UDA methods in remote sensing, based on the analysis of the causes of domain shift, a comprehensive review is provided with a fine-grained taxonomy of UDA methods applied for remote sensing data, which includes Generative training, Adversarial training, Self-training and Hybrid training methods, to better assist scholars in understanding remote sensing data and further advance the development of methods. Moreover, remote sensing applications are introduced by a thorough dataset analysis. Meanwhile, we sort out definitions and methodology introductions of partial, open-set and multi-domain UDA, which are more pertinent to real-world remote sensing applications. We can draw the conclusion that UDA methods in the field of remote sensing data are carried out later than those applied in natural images, and due to the domain gap caused by appearance differences, most of methods focus on how to use generative training (GT) methods to improve the model’s performance. Finally, we describe the potential deficiencies and further in-depth insights of UDA in the field of remote sensing.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference195 articles.

1. A survey of remote-sensing big data

2. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art

3. Big Data for Remote Sensing: Challenges and Opportunities

4. Deep residual learning for image recognition;He;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

5. Aggregated residual transformations for deep neural networks;Xie;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3