Cross-Domain Classification Based on Frequency Component Adaptation for Remote Sensing Images

Author:

Zhu Peng1,Zhang Xiangrong1ORCID,Han Xiao1,Cheng Xina1ORCID,Gu Jing1,Chen Puhua1ORCID,Jiao Licheng1

Affiliation:

1. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an 710071, China

Abstract

Cross-domain scene classification requires the transfer of knowledge from labeled source domains to unlabeled target domain data to improve its classification performance. This task can reduce the labeling cost of remote sensing images and improve the generalization ability of models. However, the huge distributional gap between labeled source domains and unlabeled target domains acquired by different scenes and different sensors is a core challenge. Existing cross-domain scene classification methods focus on designing better distributional alignment constraints, but are under-explored for fine-grained features. We propose a cross-domain scene classification method called the Frequency Component Adaptation Network (FCAN), which considers low-frequency features and high-frequency features separately for more comprehensive adaptation. Specifically, the features are refined and aligned separately through a high-frequency feature enhancement module (HFE) and a low-frequency feature extraction module (LFE). We conducted extensive transfer experiments on 12 cross-scene tasks between the AID, CLRS, MLRSN, and RSSCN7 datasets, as well as two cross-sensor tasks between the NWPU-RESISC45 and NaSC-TG2 datasets, and the results show that the FCAN can effectively improve the model’s performance for scene classification on unlabeled target domains compared to other methods.

Funder

National Natural Science Foundation of China

Key Research and Development Program in the Shaanxi Province Innovation Capability Support Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3