Aspergillus and Fusarium Mycotoxin Contamination in Maize (Zea mays L.): The Interplay of Nitrogen Fertilization and Hybrids Selection

Author:

Nyandi Muhoja Sylivester12,Pepó Péter3

Affiliation:

1. Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary

2. Department of Crop Science and Beekeeping Technology, College of Agriculture and Food Technology, University of Dar es Salaam, P.O. Box 35134, Dar es Salaam 14115, Tanzania

3. Institute of Crop Sciences, Faculty of Agricultural, Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary

Abstract

Maize plays a significant global role as a food source, feed, and as a raw material in industry. However, it is affected by toxin-producing fungi, mainly Fusarium graminearum, Fusarium verticillioides, and Aspergillus flavus, which compromise its quality. This study, conducted in 2022 and 2023 at the Látókép long-term research site of the University of Debrecen, Hungary, investigated the effects of different nitrogen fertilization rates (0, 90 and 150 Kgha−1 N) on mycotoxin contamination (DON vs. FB vs. AFB1) in the kernels of three (3) maize hybrids: DKC4590 (tolerant), GKT376 (sensitive), and P9610 (undefined). The results showed a significant (p = 0.05) influence of nitrogen fertilization and maize genotype on mycotoxin levels. Sole nitrogen impacts were complex and did not define a clear trend, contrary to the hybrids selected, which followed superiority to resistance. Increased nitrogen fertilization was associated with higher DON production, while hybrid selection demonstrated a clearer trend in resistance to mycotoxins. Therefore, to maximize yield and minimize mycotoxin contamination, future research should focus on optimizing nitrogen application rates and breeding for resistance to balance yield and mycotoxin management. These results suggest that while nitrogen fertilization is crucial for maximizing yield, selecting less susceptible maize hybrids remains vital for minimizing mycotoxin contamination.

Funder

Tempus Public Foundation (TPF) in the framework of stipendium hungaricum scholarship

University of Debrecen

the national library, Hungary

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3