Updating the Methodology of Identifying Maize Hybrids Resistant to Ear Rot Pathogens and Their Toxins—Artificial Inoculation Tests for Kernel Resistance to Fusarium graminearum, F. verticillioides, and Aspergillus flavus

Author:

Mesterhazy Akos,Szieberth Denes,Toldine Eva Tóth,Nagy Zoltan,Szabó BalázsORCID,Herczig Beata,Bors Istvan,Tóth Beata

Abstract

Resistance to toxigenic fungi and their toxins in maize is a highly important research topic, as mean global losses are estimated at about 10% of the yield. Resistance and toxin data of the hybrids are mostly not given, so farmers are not informed about the food safety risks of their grown hybrids. According to the findings aflatoxin regularly occurs at preharvest in Hungary and possibly other countries in the region can be jeopardized. We tested, with an improved methodology (two isolates, three pathogens, and a toxin control), 18 commercial hybrids (2017–2020) for kernel resistance (%), and for toxin contamination separately by two–two isolates of F. graminearum, F. verticillioides (mg/kg), and A. flavus (μg/kg). The preharvest toxin contamination was measured in the controls. Highly significant kernel resistance and toxin content differences were identified between hybrids to the different fungi. Extreme high toxin production was found for each toxic species. Only about 10–15% of the hybrids showed higher resistance to the fungal species tested and lower contamination level of their toxins. The lacking correlations between resistance to different fungi and toxins suggest that resistance to different fungi and response to toxin contamination inherits independently, so a toxin analysis is necessary. For safety risk estimation, separated artificial and natural kernel infection and toxin data are needed against all pathogens. Higher resistance to A. flavus and F. verticillioides stabilizes or improves feed safety in hot and dry summers, balancing the harmful effect of climate changes. Resistance and toxin tests during variety registration is an utmost necessity. The exclusion of susceptible or highly susceptible hybrids from commercial production results in reduced toxin contamination.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference88 articles.

1. International Grains Council Grain Market Report Five-Year Baseline Projections of Supply and Demand for Wheat, Maize (Corn), Rice and Soyabeans to 2023/24 March 2019,2019

2. Breeding maize for resistance to mycotoxins;Lanubile,2014

3. Genetic variation for resistance and mycotoxin content of European maize inoculated withFusarium graminearumandF. verticillioides

4. Breeding for resistance to ear rots caused by Fusarium spp. in maize - a review

5. A New Concept to Secure Food Safety Standards against Fusarium Species and Aspergillus Flavus and Their Toxins in Maize

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3