Abstract
Modeling of soft robotics systems proves to be an extremely difficult task, due to the large deformation of the soft materials used to make such robots. Reliable and accurate models are necessary for the control task of these soft robots. In this paper, a data-driven approach using machine learning is presented to model the kinematics of Soft Pneumatic Actuators (SPAs). An Echo State Network (ESN) architecture is used to predict the SPA’s tip position in 3 axes. Initially, data from actual 3D printed SPAs is obtained to build a training dataset for the network. Irregular-intervals pressure inputs are used to drive the SPA in different actuation sequences. The network is then iteratively trained and optimized. The demonstrated method is shown to successfully model the complex non-linear behavior of the SPA, using only the control input without any feedback sensory data as additional input to the network. In addition, the ability of the network to estimate the kinematics of SPAs with different orientation angles θ is achieved. The ESN is compared to a Long Short-Term Memory (LSTM) network that is trained on the interpolated experimental data. Both networks are then tested on Finite Element Analysis (FEA) data for other θ angle SPAs not included in the training data. This methodology could offer a general approach to modeling SPAs with varying design parameters.
Funder
Academy of Scientific Research and Technology (ASRT), Egypt
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献