Soft pneumatic muscles for post-stroke lower limb ankle rehabilitation: leveraging the potential of soft robotics to optimize functional outcomes

Author:

Orban Mostafa,Guo Kai,Yang Hongbo,Hu Xuhui,Hassaan Mohamed,Elsamanty Mahmoud

Abstract

Introduction: A soft pneumatic muscle was developed to replicate intricate ankle motions essential for rehabilitation, with a specific focus on rotational movement along the x-axis, crucial for walking. The design incorporated precise geometrical parameters and air pressure regulation to enable controlled expansion and motion.Methods: The muscle’s response was evaluated under pressure conditions ranging from 100-145 kPa. To optimize the muscle design, finite element simulation was employed to analyze its performance in terms of motion range, force generation, and energy efficiency. An experimental platform was created to assess the muscle’s deformation, utilizing advanced techniques such as high-resolution imaging and deep-learning position estimation models for accurate measurements. The fabrication process involved silicone-based materials and 3D-printed molds, enabling precise control and customization of muscle expansion and contraction.Results: The experimental results demonstrated that, under a pressure of 145 kPa, the y-axis deformation (y-def) reached 165 mm, while the x-axis and z-axis deformations were significantly smaller at 0.056 mm and 0.0376 mm, respectively, highlighting the predominant elongation in the y-axis resulting from pressure actuation. The soft muscle model featured a single chamber constructed from silicone rubber, and the visually illustrated and detailed geometrical parameters played a critical role in its functionality, allowing systematic manipulation to meet specific application requirements.Discussion: The simulation and experimental results provided compelling evidence of the soft muscle design’s adaptability, controllability, and effectiveness, thus establishing a solid foundation for further advancements in ankle rehabilitation and soft robotics. Incorporating this soft muscle into rehabilitation protocols holds significant promise for enhancing ankle mobility and overall ambulatory function, offering new opportunities to tailor rehabilitation interventions and improve motor function restoration.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference48 articles.

1. Modelling of continuum robotic arm using artificial neural network (ann);Alphonse,2019

2. Design and modeling of generalized fiber-reinforced pneumatic soft actuators;Bishop-Moser;IEEE Trans. Robotics,2015

3. Closed-loop torque and kinematic control of a hybrid lower-limb exoskeleton for treadmill walking;Chang;Front. Robotics AI,2022

4. A supernumerary soft robotic limb for reducing hand-arm vibration syndromes risks;Ciullo;Front. Robotics AI,2021

5. Biorobotics: an overview of recent innovations in artificial muscles;Craddock;Actuators,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3