Concentrating Solar Collectors for a Trigeneration System—A Comparative Study

Author:

Bellos EvangelosORCID,Tzivanidis ChristosORCID

Abstract

The objective of this study is the investigation of different solar concentrating collectors for application in a trigeneration system. Parabolic trough collectors, linear Fresnel reflectors and solar dishes are the examined solar concentrating technologies in this work. The trigeneration unit includes an organic Rankine cycle coupled with an absorption heat machine that operates with LiBr/water. The analysis is performed throughout the year by using the weather data of Athens in Greece. The results of this work indicate that the selection of parabolic trough collectors is the best choice because it leads to the maximum yearly system energy efficiency of 64.40% and to the minimum simple payback period of 6.25 years. The second technology is the solar dish with the energy efficiency of 62.41% and the simple payback period of 6.95 years, while the linear Fresnel reflector is the less efficient technology with the energy efficiency of 35.78% and with a simple payback period of 10.92 years. Lastly, it must be stated that the thermodynamic investigation of the system is performed with a created model in Engineering Equation Solver, while the dynamic analysis is performed with a code in the programming language FORTRAN.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3