Author:
Sun Lei,Wang Yuqi,Wang Ding,Xie Yonghui
Abstract
Supercritical CO2 (S-CO2) Brayton cycles have become an effective way in utilizing solar energy, considering their advantages. The presented research discusses a parametrized analysis and systematic comparison of three S-CO2 power cycles coupled with parabolic trough collectors. The effects of turbine inlet temperature and pressure, compressor inlet temperature, and pressure on specific work, overall efficiency, and cost of core equipment of different S-CO2 Brayton cycles are discussed. Then, the two performance criteria, including specific work and cost of core equipment, are compared, simultaneously, between different S-CO2 cycle layouts after gaining the Pareto sets from multi-objective optimizations using genetic algorithm. The results suggest that the simple recuperation cycle layout shows more excellent performance than the intercooling cycle layout and the recompression cycle layout in terms of cost, while the advantage in specific work of the intercooling cycle layout and the recompression cycle layout is not obvious. This study can be useful in selecting cycle layout using solar energy by the parabolic trough solar collector when there are requirements for the specific work and the cost of core equipment. Moreover, high turbine inlet temperature is recommended for the S-CO2 Brayton cycle using solar energy.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献