Author:
Kim Young-Gyu,Park Tae-Hyoung
Abstract
The automated optical inspection of a surface mount technology line inspects a printed circuit board for quality assurance, and subsequently classifies the chip assembly defects. However, it is difficult to improve the accuracy of previous defect classification methods using full chip component images with single-stream convolutional neural networks due to interference elements such as silk lines included in a printed circuit board image. This paper proposes a late-merge dual-stream convolutional neural network to increase the classification accuracy. Two solder regions are extracted from a printed circuit board image and are input to a convolutional neural network with a merge stage. A new convolutional neural network structure is then proposed that is able to classify for defects. Since defect features are concentrated in solder regions, the classification accuracy is increased. In addition, the network weight is reduced due to a reduction of the input data. Experimental results for the proposed method show a 5.3% higher performance in F1-score than a single-stream convolutional neural network based on full chip component images.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献