Visual Workflow Process Modeling and Simulation Approach Based on Non-Functional Properties of Resources

Author:

Ougaabal Kawtar,Zacharewicz GregoryORCID,Ducq Yves,Tazi Said

Abstract

With the emergence of big data and cloud technologies, companies now evolve in complex IT environments. This situation requires good practices for data process automation to be adopted to ensure system interoperability. Visual computing helps companies to describe and organize the ways in which information systems, devices, and people must interact. It incorporates a number of fields including modeling and simulation (M&S). This paper focused on M&S of data workflow processes that are key steps to bridging the gap between business views and goals on the one side, and operational implementations on the other side. Simulation adds a dynamic view to static modeling; it increases understanding of the behavior of process mechanisms and the identification of weak areas in data flow. Several research projects have been focused on control flow and data flow, but less attention has been paid to resource characteristics. This work is based on the MDSEA approach and the eBPMN language, and proposes an approach that aims to distinguish the types of resources carrying out process tasks. Furthermore, it introduces a new composite resource made from the relationship between a user (human resource) and a task form (IT resource). Moreover, it proposes a resource aggregation based on process performance combination in order to run and display a global performance measurement of a process path.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3