Abstract
Studies on room monitoring have only focused on objects in a singular and uniform posture or low-density groups. Considering the wide use of convolutional neural networks for object detection, especially person detection, we use deep learning and perspective correction techniques to propose a room monitoring system that can detect persons with different motion states, high-density groups, and small-sized persons owing to the distance from the camera. This system uses consecutive frames from the monitoring camera as input images. Two approaches are used: perspective correction and person detection. First, perspective correction is used to transform an input image into a 2D top-view image. This allows users to observe the system more easily with different views (2D and 3D views). Second, the proposed person detection scheme combines the Mask region-based convolutional neural network (R-CNN) scheme and the tile technique for person detection, especially for detecting small-sized persons. All results are stored in a cloud database. Moreover, new person coordinates in 2D images are generated from the final bounding boxes and heat maps are created according to the 2D images; these enable users to examine the system quickly in different views. Additionally, a system prototype is developed to demonstrate the feasibility of the proposed system. Experimental results prove that our proposed system outperforms existing schemes in terms of accuracy, mean absolute error (MAE), and root mean squared error (RMSE).
Funder
Ministry of Science and Technology, Republic of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献