Abstract
Human action recognition has attracted considerable research attention in the field of computer vision, especially for classroom environments. However, most relevant studies have focused on one specific behavior of students. Therefore, this paper proposes a student behavior recognition system based on skeleton pose estimation and person detection. First, consecutive frames captured with a classroom camera were used as the input images of the proposed system. Then, skeleton data were collected using the OpenPose framework. An error correction scheme was proposed based on the pose estimation and person detection techniques to decrease incorrect connections in the skeleton data. The preprocessed skeleton data were subsequently used to eliminate several joints that had a weak effect on behavior classification. Second, feature extraction was performed to generate feature vectors that represent human postures. The adopted features included normalized joint locations, joint distances, and bone angles. Finally, behavior classification was conducted to recognize student behaviors. A deep neural network was constructed to classify actions, and the proposed system was able to identify the number of students in a classroom. Moreover, a system prototype was implemented to verify the feasibility of the proposed system. The experimental results indicated that the proposed scheme outperformed the skeleton-based scheme in complex situations. The proposed system had a 15.15% higher average precision and 12.15% higher average recall than the skeleton-based scheme did.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献