A Simplified Method for Real-Time Prediction of Temperature in Mass Concrete at Early Age

Author:

An GuoORCID,Yang Ning,Li Qingbin,Hu Yu,Yang Huiting

Abstract

According to the practice of temperature control in dam concrete, within a few days after a concrete block is poured, the temperature at the core of the concrete rises rapidly. The maximum temperature may still exceed the standard even under a relatively perfect post-cooling system, which is mostly caused by failure to quickly and correctly judge the development of the early-age temperature. This study investigates concrete temperature at an early age via in situ monitoring data collected from Baihetan arch dam and Wudongde arch dam. A simplified algorithm of temperature prediction is formed, which only considers the heat released by cement hydration and the cooling effect of cooling pipes. The influence of a cooling pipe on the measuring point of the thermometer is investigated, and a simple empirical formula to calculate the cooling effect is obtained. An equation for the rate of hydration temperature rise is achieved by combining measured data and the formula used to calculate the cooling effect. Furthermore, through the explorations of the related data, it is determined that the cement hydration ratio of the two dams is quite low during concreting. On the basis of the data collected from the field, the method to predict temperature proposed in this study is tested and proven.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3