Research on Temperature Control Index for High Concrete Dams Based on Information Entropy and Cloud Model from the View of Spatial Field

Author:

Yang Guang1,Sun Jin2,Zhang Jianwei1,Niu Jingtai3,Luan Bowen1,Huang Zhendong1,Zhao Ahui1

Affiliation:

1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

3. School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China

Abstract

It is significant to adopt scientific temperature control criteria for high concrete dams in the construction period according to practical experience and theoretical calculation. This work synthetically uses information entropy and a cloud model and develops novel in situ observation data-based temperature control indexes from the view of a spatial field. The order degree and the disorder degree of observation values are defined according to the probability principle. Information entropy and weight parameters are combined to describe the distribution characteristics of the temperature field. Weight parameters are optimized via projection pursuit analysis (PPA), and then temperature field entropy (TFE) is constructed. Based on the above work, multi-level temperature control indexes are set up via a cloud model. Finally, a case study is conducted to verify the performance of the proposed method. According to the calculation results, the change law of TFEs agrees with actual situations, indicating that the established TFE is reasonable, the application conditions of the cloud model are wider than those of the typical small probability method, and the determined temperature control indexes improve the safety management level of high concrete dams. Research results offer scientific reference and technical support for temperature control standards adopted at other similar projects.

Funder

National Natural Science Foundation of China

the Scientific Research Foundation of high-level talents of the North China University of Water Resources and Electric Power

Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3