Performance Study of Direct Integration of Phase Change Material into an Innovative Evaporator of a Simple Vapour Compression System

Author:

Mselle Boniface Dominick,Vérez David,Zsembinszki Gabriel,Borri EmilianoORCID,Cabeza Luisa F.ORCID

Abstract

This paper experimentally investigates the direct integration of 3.15 kg of phase change materials (PCM) into a standard vapour compression system of variable cooling capacity, through an innovative lab-scale refrigerant-PCM-water heat exchanger (RPW-HEX), replacing the conventional evaporator. Its performance was studied in three operating modes: charging, discharging, and direct heat transfer between the three fluids. In the charging mode, a maximum energy of 300 kJ can be stored in the PCM for the cooling capacity at 30% of the maximum value. By doubling the cooling power, the duration of charging is reduced by 50%, while the energy stored is only reduced by 13%. In the discharging mode, the process duration is reduced from 25 min to 9 min by increasing the heat transfer fluid (HTF) flow rate from 50 L·h−1 to 150 L·h−1. In the direct heat transfer mode, the energy stored in the PCM depends on both the cooling power and the HTF flow rate, and can vary from 220 kJ for a cooling power at 30% and HTF flow rate of 50 L·h−1 to 4 kJ for a compressor power at 15% and a HTF flow rate of 150 L·h−1. The novel heat exchanger is a feasible solution to implement latent energy storage in vapour compression systems resulting to a compact and less complex system.

Funder

Horizon 2020

Generalitat de Catalunya

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3