Evaluating the Energy Efficiency and Environmental Impact of COVID-19 Vaccines Coolers through New Optimization Indexes: Comparison between Refrigeration Systems Using HFC or Natural Refrigerants

Author:

Santos Alexandre F.,Gaspar Pedro D.ORCID,de Souza Heraldo J. L.

Abstract

COVID-19 vaccines are used worldwide to promote immunity and, in that sense, vaccination is a step forward toward ending the pandemic. Nevertheless, current vaccines must be ultra-cold or cold-stored. Vaccine coolers’ energy demand and greenhouse gas emissions lead to a significant environmental impact. This article predicts the environmental and energy impacts of some COVID-19 vaccines: Moderna, Janssen, CoronaVac, Pfizer, AstraZeneca–Oxford–Covishield, and Sputnik V, in terms of carbon dioxide emissions using a new approach for the TEWI (Total Equivalent Warming Impact) methodology, with several options of refrigerants from halogenated to natural fluids such as propane, which is natural gas with low GWP (global warming potential). Through the application of new optimization indexes, it is concluded that the evaporation temperature of the refrigerant gas has a great influence on the sizing of the coolers. For example, for the same number of vaccines, the thermal load of Pfizer is more than double that of AstraZeneca–Covishield, CoronaVac, or Janssen, while the direct environmental impact is seven times greater. Another relevant factor is the choice of refrigerant. For example, the greenhouse effect varies greatly for the same brand of vaccine. The Moderna vaccine’s global warming potential (GWP) is 776 times higher using R-449A gas than using R-290 (propane gas). In Brazil, the refrigerators used to store the Pfizer vaccine have a total TEWI almost two times higher than the total TEWI of refrigerators using propane to store the Janssen vaccine. At this time of the pandemic, these optimization indexes can be used to support important decisions regarding the future selection of vaccine brands considering the energy consumption and environmental impact required for their storage.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference48 articles.

1. Vacina ma Mensageirohttps://www.pfizer.com.br/noticias/ultimas-noticias%20/vacina-de-rna-mensageiro

2. Vacinas de Vetores Virais–Vacinas não Replicantes. Sociedade Brasileira de Imunizações (SBIm)https://familia.sbim.org.br/COVID19/Comofunciona

3. Conservação de Vacinas. Sociedade Brasileira de Imunizações (SBIm)https://familia.sbim.org.br/seguranca/conservacao.

4. Manual de Rede de Frio do Programa Nacional de Imunizações. FUNASA. Secretaria de Vigilância em Saúde,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3