Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study

Author:

Singh Siddhartha KumarORCID,Mali Harlal SinghORCID,Unune Deepak RajendraORCID,Wojciechowski SzymonORCID,Wilczyński DominikORCID

Abstract

Micro-Electric Discharge Machining (μ-EDM) is one of the widely applied micromanufacturing processes. However, it has several limitations, such as a low cutting rate, difficult debris removal, and poor surface integrity, etc. Hybridization of the μ-EDM is proposed as an alternative to overcome the process limitations. Conversely, it complicates the process nature and poses a challenge for modelling and predicting critical process responses. Therefore, in this work, two distinct, nonparametric, previously unreported, workpiece material independent models using a Generalized Regression Neural Network (GRNN) and Gaussian Process Regression (GPR) were developed and compared to assess their performance with limited training data. Various smoothing factors and kernels were tested for GRNN and GPR, respectively. The prediction of models was compared in terms of the mean absolute percentage error, root mean square error, and coefficient of determination. The results showed that GPR outperforms GRNN and accurately predicts the μ-EDM process responses. The GRNN’s performance was better for less stochastic output with a discernible pattern than other outputs. The Automatic Relevance Determination (ARD) squared exponential kernel was found to be the best performing kernel among those chosen. GPR models can be used with reasonable accuracy to predetermine critical process outputs as they have R2 values above 0.90 for both training and validation data for all outputs. This work paves the way for future industrial implementation of GPR to model and predict the outputs of complex hybrid machining processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3