Characterization of a Bacillus subtilis S-16 Thiazole-Synthesis-Related Gene thiS Knockout and Antimicrobial Activity Analysis

Author:

Hu Jinghan1,Su Zhenhe2,Dong Baozhu13,Wang Dong13,Liu Xiaomeng2,Meng Huanwen13,Guo Qinggang2,Zhou Hongyou13

Affiliation:

1. College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China

2. Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China

3. Inner Mongolia Cold and Arid Region Crop Protection Engineering Technology Center, Hohhot 010020, China

Abstract

Bacillus subtilis S-16 isolated from sunflower-rhizosphere soil is an effective biocontrol agent for preventing soilborne diseases in plants. Previous research revealed that the volatile organic compounds (VOCs) produced by the S-16 strain have strong inhibitory effects on Sclerotinia sclerotiorum. The identification of the VOCs of S-16 using gas chromatography-tandem mass spectrometry (GC-MS/MS) revealed 35 compounds. Technical-grade formulations of four of these compounds were chosen for further study: 2-pentadecanone, 6,10,14-trimethyl-2-octanone, 2-methyl benzothiazole (2-MBTH), and heptadecane. The major constituent, 2-MBTH, plays an important role in the antifungal activity of the VOCs of S-16 against the growth of Sclerotinia sclerotiorum. The purpose of this study was to determine the impact of the thiS gene’s deletion on the 2-MBTH production and to conduct an antimicrobial activity analysis of the Bacillus subtilis S-16. The thiazole-biosynthesis gene was deleted via homologous recombination, after which the contents of 2-MBTH in the wild-type and mutant S-16 strains were analyzed using GC-MS. The antifungal effects of the VOCs were determined using a dual-culture technique. The morphological characteristics of the Sclerotinia sclerotiorum mycelia were examined via scanning-electron microscopy (SEM). Additionally, the lesion areas on the sunflower leaves with and without treatment with the VOCs from the wild-type and mutant strains were measured to explore the effects of the VOCs on the virulence of the Sclerotinia sclerotiorum. Moreover, the effects of the VOCs on the sclerotial production were assessed. We showed that the mutant strain produced less 2-MBTH. The ability of the VOCs produced by the mutant strain to inhibit the growth of the mycelia was also reduced. The SEM observation showed that the VOCs released by the mutant strain also caused more flaccid and gapped hyphae in the Sclerotinia sclerotiorum. The Sclerotinia sclerotiorum treated by the VOCs produced by the mutant strains caused more damage to the leaves than that treated by the VOCs produced by the wild type and the mutant-strain-produced VOCs inhibited sclerotia formation less. The production of 2-MBTH and its antimicrobial activities were adversely affected to varying degrees by the deletion of thiS.

Funder

the National Natural Science Foundation of China

the earmarked fund for National Key R & D Projects

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3