Green Synthesis and Molecular Docking Study of Some New Thiazoles Using Terephthalohydrazide Chitosan Hydrogel as Ecofriendly Biopolymeric Catalyst

Author:

Al-Humaidi Jehan Y.1,Gomha Sobhi M.2ORCID,El-Ghany Nahed A. Abd3,Farag Basant4,Zaki Magdi E. A.5ORCID,Abolibda Tariq Z.2ORCID,Mohamed Nadia A.36ORCID

Affiliation:

1. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Chemistry, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia

3. Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt

4. Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

5. Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11623, Saudi Arabia

6. Department of Chemistry, College of Science, Qassim University, P.O. Box 6644, Buraidah 51452, Saudi Arabia

Abstract

Terephthalohydrazide chitosan hydrogel (TCs) was prepared and investigated as an ecofriendly biopolymeric catalyst for synthesis of some novel thiazole and thiadiazole derivatives. Thus, TCs was used as a promising ecofriendly basic biocatalyst for preparation of three new series of thiazoles and two thiadiazoles derivatives via reacting 2-(2-oxo-1,2-diphenylethylidene) hydrazine-1-carbothio-amide with various hydrazonoyl chlorides and α-haloketones under mild ultrasonic irradiation. Also, their yield% was estimated using chitosan and TCs in a comparative study. The procedure being employed has the advantages of mild reaction conditions, quick reaction durations, and high reaction yields. It also benefits from the catalyst’s capacity to be reused several times without significantly losing potency. The chemical structures of the newly prepared compounds were confirmed by IR, MS, and 1H-NMR. Docking analyses of the synthesized compounds’ binding modes revealed promising binding scores against the various amino acids of the selected protein (PDB Code—1JIJ). SwissADME’s online tool is then used to analyze the physiochemical and pharmacokinetic characteristics of the most significant substances. The majority of novel compounds showed zero violation from Lipinski’s rule (Ro5).

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3