Impact of Two Lavender Extracts on Silver Nanoparticle Synthesis, and the Study of Nanoparticles’ Antibiofilm Properties and Their Ability to Transfer them into a Nontoxic Polymer

Author:

Mačák Lívia1,Velgosova Oksana1ORCID,Dolinská Silvia2

Affiliation:

1. Institute of Materials and Quality Engineering, Faculty of Materials Metallurgy and Recycling, Technical University of Košice, Letná 9/A, 042 00 Košice, Slovakia

2. Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia

Abstract

In this work, we aimed to analyze the impact of extracts prepared from dried Lavandula angustifolia (lavender) flowers and leaves on the synthesis of silver nanoparticles (AgNPs) (wherein the shape and size of AgNPs and the efficiency of the process were analyzed) and to prove the possibility of transferring the AgNPs’ properties into a polymer matrix. An ex situ method was used to incorporate AgNPs and prepare polymer matrix composite (PVP-AgNPs) films (via casting) and fibers (via electrospinning). We used UV-vis absorption spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) to analyze and characterize the AgNPs and prepared composites. The results of FTIR analysis confirmed the presence of phytochemicals that can reduce silver ions from Ag+ to Ag0 in both extracts. The presence of spherical nanoparticles was confirmed via TEM regardless of the type of extract used. However, leaf extract caused the formation of AgNPs with a narrower size interval (an average size of 20 nm), and with higher efficiency, compared to the nanoparticles prepared using the flower extract. The nanoparticles prepared using the leaf extract were then incorporated into the polymer matrix, and thin polymer composite films and fibers were successfully prepared. The anti-biofilm activity of AgNPs colloids and prepared polymer nanocomposites against green algae Chlorella kessleri was studied. The anti-biofilm properties of the AgNPs were proved, along with the efficient transfer of their toxic properties into nontoxic polymer.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3