Concerto: Dynamic Processor Scaling for Distributed Data Systems with Replication

Author:

Lee Jinsu,Lee Eunji

Abstract

A surge of interest in data-intensive computing has led to a drastic increase in the demand for data centers. Given this growing popularity, data centers are becoming a primary contributor to the increased consumption of energy worldwide. To mitigate this problem, this paper revisits DVFS (Dynamic Voltage Frequency Scaling), a well-known technique to reduce the energy usage of processors, from the viewpoint of distributed systems. Distributed data systems typically adopt a replication facility to provide high availability and short latency. In this type of architecture, the replicas are maintained in an asynchronous manner, while the master synchronously operates via user requests. Based on this relaxation constraint of replica, we present a novel DVFS technique called Concerto, which intentionally scales down the frequency of processors operating for the replicas. This mechanism can achieve considerable energy savings without an increase in the user-perceived latency. We implemented Concerto on Redis 6.0.1, a commercial-level distributed key-value store, demonstrating that all associated performance issues were resolved. To prevent a delay in read queries assigned to the replicas, we offload the independent part of the read operation to the fast-running thread. We also empirically demonstrate that the decreased performance of the replica does not cause an increase of the replication lag because the inherent load unbalance between the master and replica hides the increased latency of the replica. Performance evaluations with micro and real-world benchmarks show that Redis saves 32% on average and up to 51% of energy with Concerto under various workloads, with minor performance losses in the replicas. Despite numerous studies of the energy saving in data centers, to the best of our best knowledge, Concerto is the first approach that considers clock-speed scaling at the aggregate level, exploiting heterogeneous performance constraints across data nodes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Recalibrating global data center energy-use estimates

2. Power and energy management for server systems

3. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431;Brown,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model of Verification of Distributed Storage Systems;2023 IEEE East-West Design & Test Symposium (EWDTS);2023-09-22

2. A Universal Aquaculture Environmental Anomaly Monitoring System;Sustainability;2023-03-24

3. Service Level Objective Adaptive Energy Efficiency Management;2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS);2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3