Affiliation:
1. National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
Abstract
The current aquaculture environment anomaly monitoring system is limited in function, making it difficult to provide overall technical support for the sustainable development of aquaculture ecosystems. This paper designs a set for an IoT-based aquaculture environment monitoring device. The device is capable of collecting five aquaculture environment factors such as water temperature, pH, salinity, dissolved oxygen and light intensity throughout the day by wireless data transmission via 4G DTU with a communication success rate of 92.08%. A detection method based on time series sliding window density clustering (STW-DBSCAN) is proposed for anomaly detection, using the confidence interval distance radius of slope to extract subsequence timing features and identify the suspected abnormal subsequences and then further determine the anomalous value by the DBSCAN clustering method. The detection results show that the algorithm can accurately identify abnormal subsequences and outliers, and the accuracy, recall and F1-Score are 87.71%, 82.58% and 85.06%, respectively, which verifies the usability of the proposed method. Further, a fuzzy control algorithm is adopted to specify the warning information, and a software platform is developed based on data visualization. The platform uses WebSocket technology to interact with the server, and combined with the surveillance camera, it can monitor the aquaculture environment and perform data monitoring and analysis in a real-time, accurate and comprehensive manner, which can provide theoretical reference and technical support for sustainable development of aquaculture.
Funder
National Key Research and Development Project of China
Key Research and Development Program of Zhejiang Province
Science and Technology Innovation 2025 Major Project of Ningbo City
Zhoushan Science and Technology Projects
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献