SA-SVM-Based Locomotion Pattern Recognition for Exoskeleton Robot

Author:

Yin Zeyu,Zheng Jianbin,Huang LipingORCID,Gao Yifan,Peng Huihui,Yin Linghan

Abstract

An exoskeleton robot is a kind of wearable mechanical instrument designed according to the shape and function of the human body. The main purpose of its design and manufacture is to enhance human strength, assist human walking and to help patients recover. The walking state of the exoskeleton robot should be highly consistent with the state of the human, so the accurate locomotion pattern recognition is the premise of the flexible control of the exoskeleton robot. In this paper, a simulated annealing (SA) algorithm-based support vector machine model is proposed for the recognition of different locomotion patterns. In order to improve the overall performance of the support vector machine (SVM), the simulated annealing algorithm is adopted to obtain the optimal parameters of support vector machine. The pressure signal measured by the force sensing resistors integrated on the sole of the shoe is fused with the position and pose information measured by the inertial measurement units attached to the thigh, shank and foot, which are used as the input information of the support vector machine. The max-relevance and min-redundancy algorithm was selected for feature extraction based on the window size of 300 ms and the sampling frequency of 100 Hz. Since the signals come from different types of sensors, normalization is required to scale the input signals to the interval (0,1). In order to prevent the classifier from overfitting, five layers of cross validation are used to train the support vector machine classifier. The support vector machine model was obtained offline in MATLAB. The finite state machine is used to limit the state transition and improve the recognition accuracy. Experiments on different locomotion patterns show that the accuracy of the algorithm is 97.47% ± 1.16%. The SA-SVM method can be extended to industrial robots and rehabilitation robots.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3