Path Planning Method for UAVs Based on Constrained Polygonal Space and an Extremely Sparse Waypoint Graph

Author:

Majeed AbdulORCID,Hwang Seong OunORCID

Abstract

Finding an optimal/quasi-optimal path for Unmanned Aerial Vehicles (UAVs) utilizing full map information yields time performance degradation in large and complex three-dimensional (3D) urban environments populated by various obstacles. A major portion of the computing time is usually wasted on modeling and exploration of spaces that have a very low possibility of providing optimal/sub-optimal paths. However, computing time can be significantly reduced by searching for paths solely in the spaces that have the highest priority of providing an optimal/sub-optimal path. Many Path Planning (PP) techniques have been proposed, but a majority of the existing techniques equally evaluate many spaces of the maps, including unlikely ones, thereby creating time performance issues. Ignoring high-probability spaces and instead exploring too many spaces on maps while searching for a path yields extensive computing-time overhead. This paper presents a new PP method that finds optimal/quasi-optimal and safe (e.g., collision-free) working paths for UAVs in a 3D urban environment encompassing substantial obstacles. By using Constrained Polygonal Space (CPS) and an Extremely Sparse Waypoint Graph (ESWG) while searching for a path, the proposed PP method significantly lowers pathfinding time complexity without degrading the length of the path by much. We suggest an intelligent method exploiting obstacle geometry information to constrain the search space in a 3D polygon form from which a quasi-optimal flyable path can be found quickly. Furthermore, we perform task modeling with an ESWG using as few nodes and edges from the CPS as possible, and we find an abstract path that is subsequently improved. The results achieved from extensive experiments, and comparison with prior methods certify the efficacy of the proposed method and verify the above assertions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficiency of UAV-assisted cellular networks under jamming scenarios;Vehicular Communications;2024-10

2. An improved method planning path of an autonomous ground robot with using the MBD-RRT*FFT algorithm;Communication, informatization and cybersecurity systems and technologies;2024-06-01

3. Method for planning the way of UGV using a modification of dynamic bi-directional RRT algorithm.;Communication, informatization and cybersecurity systems and technologies;2023-12-21

4. A Cross-Platform Implementation of Indoor Navigation System Using Unity and Smartphone INSUS;2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE);2023-10-14

5. Special Issue on Unmanned Aerial Vehicles;Applied Sciences;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3