Method for planning the way of UGV using a modification of dynamic bi-directional RRT algorithm.

Author:

Bernatskyi А.

Abstract

The path planning problem of unmanned autonomous ground vehicles has always been an acute problem in the field of autonomous ground robotic systems research. From the point of view of the complexity of the tasks during the conduct of combat operations in the urbanized space of the densely built-up city with a constantly changing landscape, the tasks entrusted to the UGV are constantly becoming more difficult, and the scenarios of the use of the UGV demonstrate a diversified trend in the development of new management and control systems. The rapidity of conducting modern military operations in an urbanized space appears as a complex and multifaceted task. Considering the complexity of the UGV movement process, at the current stage of the development of robotic systems, the general trend is to abandon remote control of robotic complexes with the transition to automatic modes, which requires the development and implementation of algorithms for automatic interaction and movement of military mobile robotic systems. To solve the problems of the Rapidly-Exploring Random Tree *Fixed Nodes algorithm regarding its low speed for obtaining track junctions and the impossibility of using it in a dynamic environment when planning a UGV path. To solve the problem of accelerating the acquisition of collision-free paths in real time in two-dimensional space, it is proposed to apply a modified dynamic bidirectional RRT* algorithm with reference nodes. The algorithm is a modification of Rapidly-Exploring Random Tree *Fixed Nodes using a bidirectional greedy search method to speed up and solve the problem of the unidirectional Rapidly-Exploring Random Tree algorithm regarding its slow search speed, as well as the difficulties of decision making in a narrow environment caused by blind random sampling. In the case of dynamic disturbance movement, taking advantage that reference nodes do not require much calculation in planning, in the process of iterative path optimization, the proposed algorithm updates the map information in real time and repairs the damaged output path to complete the dynamic path planning.

Publisher

Scientific Journals Publishing House

Reference18 articles.

1. 1. Бернацький А. П., Панченко І. В., Восколович О. І. Розширена математична модель руху автономного наземного робота розвідника в умовах бойових дій в урбанізованому просторі // Озброєння та військова техніка. 2021. № 30 (2). С. 121–129.

2. 2. Winnfield J. A. Unmanned Systems Integrated Roadmap FY2011-2036 / Winnfield J. A. Jr., Kendall F.-Washington, DC: U. S. Department of Defense, March 9, 2012.

3. 3. Бернацький А., Панченко І., Восколович О. Основи робототехніки військового призначення: конспект лекцій. Київ: ВІТІ, 2021.

4. 4. Thomas H. Corman, Charles I. Leiserson, Ronald L. Rivest, Clifford Stein. Algorithms: construction and analysis. Introduction to Algorithms. Michigan U.: Williams, 2006. ISBN 978-0-262-53305-8.

5. 5. Robert Schapire, Yoav Freund. Boosting: Foundations and Algorithms. MIT, 2012. ISBN 10: 0262526034; ISBN 13: 9780262526036.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved method planning path of an autonomous ground robot with using the MBD-RRT*FFT algorithm;Communication, informatization and cybersecurity systems and technologies;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3