Study of the Efficiency of Fog Computing in an Optimized LoRaWAN Cloud Architecture

Author:

Jalowiczor JakubORCID,Rozhon JanORCID,Voznak MiroslavORCID

Abstract

The technologies of the Internet of Things (IoT) have an increasing influence on our daily lives. The expansion of the IoT is associated with the growing number of IoT devices that are connected to the Internet. As the number of connected devices grows, the demand for speed and data volume is also greater. While most IoT network technologies use cloud computing, this solution becomes inefficient for some use-cases. For example, suppose that a company that uses an IoT network with several sensors to collect data within a production hall. The company may require sharing only selected data to the public cloud and responding faster to specific events. In the case of a large amount of data, the off-loading techniques can be utilized to reach higher efficiency. Meeting these requirements is difficult or impossible for solutions adopting cloud computing. The fog computing paradigm addresses these cases by providing data processing closer to end devices. This paper proposes three possible network architectures that adopt fog computing for LoRaWAN because LoRaWAN is already deployed in many locations and offers long-distance communication with low-power consumption. The architecture proposals are further compared in simulations to select the optimal form in terms of total service time. The resulting optimal communication architecture could be deployed to the existing LoRaWAN with minimal cost and effort of the network operator.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

e-Infrastructure CZ

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3