An IoT Surveillance System Based on a Decentralised Architecture

Author:

Santamaria Amilcare,Raimondo Pierfrancesco,Tropea MauroORCID,De Rango Floriano,Aiello Carmine

Abstract

In the last few years, we witnessed numerous episodes of terrorist attacks and menaces in public crowded places. The necessity of better surveillance in these places pushed the development of new automated solutions to spot and notify possible menaces as fast as possible. In this work, we propose a novel approach to create a decentralized architecture to manage patrolling drones and cameras exploiting lightweight protocols used in the internet of things (IoT) domain. Through the adoption of the mist computing paradigm it is possible to give to all the object of the smart ecosystem a cognitive intelligence to speed up the recognition and analysis tasks. Distributing the intelligence among all the objects of the surveillance ecosystem allows a faster recognition and reaction to possible warning situations. The recognition of unusual objects in certain areas, e.g., airports, train stations and bus stations, has been made using computer vision algorithms. The adoption of the IoT protocols in a hierarchical architecture provides high scalability allowing an easy and painless join of other smart objects. Also a study on the soft real-time feasibility has been conducted and is herein presented.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of data collaborative sensing methods for smart agriculture;Internet of Things;2024-12

2. UAV IoT Sensing and Networking;Drones;2024-09-07

3. Mobility prediction for re-routing strategy in drone networks;Unmanned Systems Technology XXVI;2024-06-07

4. Load balancing algorithms in SDN networks with multiple servers;Disruptive Technologies in Information Sciences VIII;2024-06-06

5. Securing IoT Surveillance Airport Infrastructure;2024 International Conference on Smart Applications, Communications and Networking (SmartNets);2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3