Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures

Author:

Pacevicius Michael FelixORCID,Ramos Marilia,Roverso Davide,Eriksen Christian Thun,Paltrinieri NicolaORCID

Abstract

Risk assessment and management are some of the major tasks of urban power-grid management. The growing amount of data from, e.g., prediction systems, sensors, and satellites has enabled access to numerous datasets originating from a diversity of heterogeneous data sources. While these advancements are of great importance for more accurate and trustable risk analyses, there is no guidance on selecting the best information available for power-grid risk analysis. This paper addresses this gap on the basis of existing standards in risk assessment. The key contributions of this research are twofold. First, it proposes a method for reinforcing data-related risk analysis steps. The use of this method ensures that risk analysts will methodically identify and assess the available data for informing the risk analysis key parameters. Second, it develops a method (named the three-phases method) based on metrology for selecting the best datasets according to their informative potential. The method, thus, formalizes, in a traceable and reproducible manner, the process for choosing one dataset to inform a parameter in detriment of another, which can lead to more accurate risk analyses. The method is applied to a case study of vegetation-related risk analysis in power grids, a common challenge faced by power-grid operators. The application demonstrates that a dataset originating from an initially less valued data source may be preferred to a dataset originating from a higher-ranked data source, the content of which is outdated or of too low quality. The results confirm that the method enables a dynamic optimization of dataset selection upfront of any risk analysis, supporting the application of dynamic risk analyses in real-case scenarios.

Funder

The Research Council of Norway

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3