Classical Failure Modes and Effects Analysis in the Context of Smart Grid Cyber-Physical Systems

Author:

Zúñiga Andrés A.ORCID,Baleia Alexandre,Fernandes JoãoORCID,Branco Paulo Jose Da CostaORCID

Abstract

Reliability assessment in traditional power distribution systems has played a key role in power system planning, design, and operation. Recently, new information and communication technologies have been introduced in power systems automation and asset management, making the distribution network even more complex. In order to achieve efficient energy management, the distribution grid has to adopt a new configuration and operational conditions that are changing the paradigm of the actual electrical system. Therefore, the emergence of the cyber-physical systems concept to face future energetic needs requires alternative approaches for evaluating the reliability of modern distribution systems, especially in the smart grids environment. In this paper, a reliability approach that makes use of failure modes of power and cyber network main components is proposed to evaluate risk analysis in smart electrical distribution systems. We introduce the application of Failure Modes and Effects Analysis (FMEA) method in future smart grid systems in order to establish the impact of different failure modes on their performance. A smart grid test system is defined and failure modes and their effects for both power and the cyber components are presented. Preventive maintenance tasks are proposed and systematized to minimize the impact of high-risk failures and increase reliability.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consequence Verification During Risk Assessments of Smart Grids;IFIP Advances in Information and Communication Technology;2023-12-29

2. Prolego: Time-Series Analysis for Predicting Failures in Complex Systems;2023 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS);2023-09-25

3. Vulnerability risk assessment of electrical energy transmission systems with the approach of identifying the initial events of cascading failures;Electric Power Systems Research;2023-07

4. A review: Monitoring situational awareness of smart grid cyber‐physical systems and critical asset identification;IET Cyber-Physical Systems: Theory & Applications;2023-05-12

5. Analysis of safety and security challenges and opportunities related to cyber-physical systems;Process Safety and Environmental Protection;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3