Photosynthetic Acclimation and Growth Responses to Elevated CO2 Associate with Leaf Nitrogen and Phosphorus Concentrations in Mulberry (Morus multicaulis Perr.)

Author:

Shi Songmei,Xu Xiao,Dong Xingshui,Xu Chenyang,Qiu Yuling,He XinhuaORCID

Abstract

Mulberry (Morus spp.) is a multipurpose tree that is worldwide planted because of its economic importance. This study was to investigate the likely consequences of anticipated future elevated CO2 (eCO2) on growth, physiology and nutrient uptake of nitrogen (N), phosphorus (P) and potassium (K) in two most widely cultivated mulberry (Morus multicaulis Perr.) varieties, QiangSang-1 and NongSang-14, in southwest China. A pot experiment was conducted in environmentally auto-controlled growth chambers under ambient CO2 (ACO2, 410/460 ppm, daytime/nighttime) and eCO2 (710/760 ppm). eCO2 significantly increased plant height, stem diameter, leaf numbers and biomass production, and decreased chlorophyll concentrations, net photosynthetic rate, stomatal conductance and transpiration rate of these two mulberry varieties. Under eCO2 leaf N and P, and root N, P and K concentrations in both mulberry varieties decreased, while plant total P and K uptake in both varieties were enhanced, and an increased total N uptake in NongSang-4, but not in QiangSang-1. Nutrient dilution and transpiration rate were the main factors driving the reduction of leaf N and P, whereas changes in plant N and P demand had substantial impacts on photosynthetic inhibition. Our results can provide effective nutrient management strategies for a sustainable mulberry production under global atmosphere CO2 rising scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference70 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. Interactive effect of elevated CO2 and reduced summer precipitation on photosynthesis is species-specific: The case study with soil-planted norway spruce and sessile oak in a mountainous forest plot;Ofori-Amanfo;Forests,2021

3. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses;Salazar-Parra;J. Plant Physiol.,2015

4. Warm air temperatures increase photosynthetic acclimation to elevated CO2 concentrations in rice under field conditions

5. Improved responses to elevated CO 2 in durum wheat at a low nitrate supply associated with the upregulation of photosynthetic genes and the activation of nitrate assimilation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3