Effect of the Light Environment on Image-Based SPAD Value Prediction of Radish Leaves

Author:

Kamiwaki Yuto1ORCID,Fukuda Shinji23ORCID

Affiliation:

1. United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan

2. Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan

3. Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tokyo 105-0003, Japan

Abstract

This study aims to clarify the influence of photographic environments under different light sources on image-based SPAD value prediction. The input variables for the SPAD value prediction using Random Forests, XGBoost, and LightGBM were RGB values, HSL values, HSV values, light color temperature (LCT), and illuminance (ILL). Model performance was assessed using Pearson’s correlation coefficient (COR), Nash–Sutcliffe efficiency (NSE), and root mean squared error (RMSE). Especially, SPAD value prediction with Random Forests resulted in high accuracy in a stable light environment; CORRGB+ILL+LCT and CORHSL+ILL+LCT were 0.929 and 0.922, respectively. Image-based SPAD value prediction was effective under halogen light with a similar color temperature at dusk; CORRGB+ILL and CORHSL+ILL were 0.895 and 0.876, respectively. The HSL value under LED could be used to predict the SPAD value with high accuracy in all performance measures. The results supported the applicability of SPAD value prediction using Random Forests under a wide range of lighting conditions, such as dusk, by training a model based on data collected under different illuminance conditions in various light sources. Further studies are required to examine this method under outdoor conditions in spatiotemporally dynamic light environments.

Funder

Tokyo University of Agriculture and Technology

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3