Abstract
Direction of arrival (DOA) estimation in diffuse multipath environments is a challenge for ground-based radar remote sensing applications, which has significant value in military fields, such as air defense surveillance. However, radar received echo usually contains various multipath signals caused by the reflection of complex ground or sea surface. With the introduction of multipath signals, traditional algorithms’ performance on angle estimation decreases severely. In response to this problem, the letter proposes a new time reversal (TR) algorithm used for multiple-input multiple-output (MIMO) radar angle estimation. First, the algorithm reconstructs a TR covariance matrix by multiplexing the data’s rows and columns, increasing the estimation accuracy of the TR covariance matrix. Besides, the letter applies a linearly constrained minimum power (LCMP) constraint to suppress diffuse multipath signals according to the prior knowledge of environments. Simulation results examine the improvement of estimation accuracy by the proposed algorithm, also verify the superiority of the proposed algorithm in different multipath scenarios. What’s more, the algorithm has broader applicability due to avoiding the difficulties of removing the coherence and estimating multipath number in practice.
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献