Joint Estimation of Azimuth and Distance for Far-Field Multi Targets Based on Graph Signal Processing

Author:

Liao KefeiORCID,Yu Zerui,Xie NingboORCID,Jiang Junzheng

Abstract

Target position estimation is one of the important research directions in array signal processing. In recent years, the research of target azimuth estimation based on graph signal processing (GSP) has sprung up, which provides new ideas for the Direction of Arrival (DoA) application. In this article, by extending GSP-based DOA to joint azimuth and distance estimation and constructing a fully connected graph signal model, a multi-target joint azimuth and distance estimation method based on GSP is proposed. Firstly, the fully connection graph model is established related to the phase information of a linear array. For the fully connection graph, the Fourier transform method is used to solve the estimated response function, and the one-dimensional estimation of azimuth and distance is completed, respectively. Finally, the azimuth and distance estimation information are combined, and the false points in the merging process are removed by using CLEAN algorithm to complete the two-dimensional estimation of targets. The simulation results show that the proposed method has a smaller mean square error than the Multiple Signal Classification (MUSIC) algorithm in azimuth estimation under the condition of a low signal-to-noise ratio and more accurate response values than the MUSIC algorithm in distance estimation under any signal-to-noise ratio in multi-target estimation.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Guangxi

Guangxi special fund project for innovation-driven development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3