The Influence of CLBP Window Size on Urban Vegetation Type Classification Using High Spatial Resolution Satellite Images

Author:

Chen Zhou,Fei Xianyun,Gao Xiangwei,Wang Xiaoxue,Zhao Huimin,Wong KapoORCID,Tsou Jin Yeu,Zhang Yuanzhi

Abstract

Urban vegetation can regulate ecological balance, reduce the influence of urban heat islands, and improve human beings’ mental state. Accordingly, classification of urban vegetation types plays a significant role in urban vegetation research. This paper presents various window sizes of completed local binary pattern (CLBP) texture features classifying urban vegetation based on high spatial-resolution WorldView-2 images in areas of Shanghai (China) and Lianyungang (Jiangsu province, China). To demonstrate the stability and universality of different CLBP window textures, two study areas were selected. Using spectral information alone and spectral information combined with texture information, imagery is classified using random forest (RF) method based on vegetation type, showing that use of spectral information with CLBP window textures can achieve 7.28% greater accuracy than use of only spectral information for urban vegetation type classification, with accuracy greater for single vegetation types than for mixed ones. Optimal window sizes of CLBP textures for grass, shrub, arbor, shrub-grass, arbor-grass, and arbor-shrub-grass are 3 × 3, 3 × 3, 11 × 11, 9 × 9, 9 × 9, 7 × 7 for urban vegetation type classification. Furthermore, optimal CLBP window size is determined by the roughness of vegetation texture.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3