Phenology Metrics for Vegetation Type Classification in Estuarine Wetlands Using Satellite Imagery

Author:

Gao Yu,Hu Zhaoling,Wang Zhen,Shi QiangORCID,Chen Dan,Wu Shuai,Gao Yajun,Zhang YuanzhiORCID

Abstract

While the efficiency of incorporating phenology features into vegetation type classification, in general, and coastal wetland vegetation classification, in particular, has been verified, it is difficult to acquire high-spatial-resolution (HSR) images taken at appropriate times for vegetation identification using phenology features because of the coastal climate and the HSR satellite imaging cycle. To strengthen phenology feature differences, in this study, we constructed vegetation phenology metrics according to vegetation NDVI time series curves fitted by samples collected from the Linhong Estuary Wetland and Liezi Estuary Wetland based on Gao Fen (GF) series satellite images taken between 2018 and 2022. Next, we calculated the phenology metrics using GF series satellite imagery taken over the most recent complete phenology cycle: 21 October 2020, 9 January 2021, 19 February 2021, and 8 May 2021. Five vegetation type classifications in the Linhong Estuary Wetland were carried out using single images of 21 October 2020 and 8 May 2021, along with their combination and the further addition of phenology metrics. From our comparison and analysis, the following findings emerged: Combining the images taken in 21 October 2020 and 8 May 2021 provided better vegetation classification accuracy than any single image, and the overall accuracy was, respectively, increased from 47% and 48% to 67%, while the corresponding kappa was increased from 33% and 34% to 58%; however, adding phenology metrics further improved the accuracy by decreasing the effect of some confusion among different vegetation types, and the overall accuracy and kappa were further improved to 75% and 69%, respectively. Though some problems remain to be further dealt with, this exploration offers helpful insights into coastal wetland vegetation classification using phenology based on HSR imagery.

Funder

Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) of Jiangsu Normal University

Jiangsu Ocean University (KSJOU), Postgraduate Research & Practice Innovation Program of Jiangsu Normal University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3