VddNet: Vine Disease Detection Network Based on Multispectral Images and Depth Map

Author:

Kerkech MohamedORCID,Hafiane Adel,Canals RaphaelORCID

Abstract

Vine pathologies generate several economic and environmental problems, causing serious difficulties for the viticultural activity. The early detection of vine disease can significantly improve the control of vine diseases and avoid spread of virus or fungi. Currently, remote sensing and artificial intelligence technologies are emerging in the field of precision agriculture. They offer interesting potential for crop disease management. However, despite the advances in these technologies, particularly deep learning technologies, many problems still present considerable challenges, such as semantic segmentation of images for disease mapping. In this paper, we present a new deep learning architecture called Vine Disease Detection Network (VddNet). It is based on three parallel auto-encoders integrating different information (i.e., visible, infrared and depth). Then, the decoder reconstructs and retrieves the features, and assigns a class to each output pixel. An orthophotos registration method is also proposed to align the three types of images and enable the processing by VddNet. The proposed architecture is assessed by comparing it with the most known architectures: SegNet, U-Net, DeepLabv3+ and PSPNet. The deep learning architectures were trained on multispectral data from an unmanned aerial vehicle (UAV) and depth map information extracted from 3D processing. The results of the proposed architecture show that the VddNet architecture achieves higher scores than the baseline methods. Moreover, this study demonstrates that the proposed method has many advantages compared to methods that directly use the UAV images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Agricultural Mapping: A Review;Agriculture;2024-07-03

2. Deep Learning-based VGG16, VGG19, and ResNet Models for Grapevine Disease Classification;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

3. APPLE DETECTION METHOD IN THE NATURAL ENVIRONMENT BASED ON IMPROVED YOLOv5;INMATEH Agricultural Engineering;2024-03-31

4. Advanced Deep Learning Approaches: Utilizing VGG16, VGG19, and ResNet Architectures for Enhanced Grapevine Disease Detection;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

5. Machine Learning in UAV-Assisted Smart Farming;Advances in Computational Intelligence and Robotics;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3