Epiphyton in Agricultural Streams: Structural Control and Comparison to Epilithon

Author:

Wijewardene Lishani,Wu NaichengORCID,Giménez-Grau Pau,Holmboe Cecilie,Fohrer NicolaORCID,Baattrup-Pedersen Annette,Riis Tenna

Abstract

Stream biofilms play an important role in the structure, functioning, and integrity of agricultural streams. In many lowland streams, macrophyte vegetation is abundant and functions as an important substrate for biofilm (epiphyton) in addition to the gravel and stone substrate for epilithon on the stream bed. We expect that reach-scale habitat conditions in streams (e.g., nutrient availability, hydraulic conditions) affect the epiphyton and epilithon biomass and composition, and that this effect will be substrate-specific (macrophytes and stones). The objectives of our study were (i) to describe concurrent changes in epiphyton and epilithon biomass and composition over a year in agricultural streams, and (ii) to determine the substrate specific reach-scale habitat drivers for the epiphyton and epilithon structure. We monitored epiphyton and epilithon biofilm biomass and composition at three-week intervals and reach-scale environmental conditions daily during a year for two agricultural steams. The results showed that epiphyton and epilithon communities differed in biomass, having high substrate specific biomass in epilithon compared to epiphyton. Epiphyton was mainly composed of diatom and green algae, while cyanobacteria were more important in epilithon, and the diatom species composition varied between the two biofilm types. Epiphyton structural properties were less influenced by reach-scale hydrology and nutrient availability compared to epilithon. The overall explanatory power of the measured environmental variables was low, probably due to micro-scale habitat effects and interactive processes within stream biofilms. Knowledge of biofilm control in agricultural streams is important in order to improve management strategies, and future studies should improve the understanding of micro-scale habitat conditions, interactive relationships within biofilms and between the biofilm and the substrates.

Funder

German Academic Exchange Service

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3