Abstract
Most habitat suitability models and resource selection functions (RSFs) use indirect variables and habitat surrogates. However, it is known that in order to adequately reflect the habitat requirements of a species, it is necessary to use proximal resource variables. Direct predictors should be used to construct a real RSF that reflects the real influence of main resources on species habitat use. In this work, we model the spatial distribution of the main food resources of brown bear Ursus arctos L. within the natural and human-modified landscapes of the Central Forest State Nature Reserve (CFNR) for further RSF construction. Food-probability models were built for Apiaceae spp. (Angelica sylvestris L., Aegopodium podagraria L., Chaerophyllum aromaticum L.), Populus tremula L., Vaccinium myrtillus L., V. microcarpum (Turcz. ex Rupr.) Schmalh., V. oxycoccos L., Corylus avellana L., Sorbus aucuparia L., Malus domestica Borkh., anthills, xylobiont insects, social wasps and Alces alces L. using the MaxEnt algorithm. For model evaluation, we used spatial block cross-validation and held apart fully independent data. The true skill statistic (TSS) estimates ranged from 0.34 to 0.95. Distribution of Apiaceae forbs was associated with areas having rich phytomass and moist conditions on southeastern slopes. Populus tremula preferred areas with phytomass abundance on elevated sites. Vaccinium myrtillus was confined to wet boreal spruce forests. V. microcarpum and V. oxycoccos were associated with raised bogs in depressions of the terrain. Corylus avellana and Sorbus aucuparia preferred mixed forests on elevated sites. Distribution of Malus domestica was associated with meadows with dry soils in places of abandoned cultural landscapes. Anthills were common on the dry soils of meadows, and the periphery of forest areas with high illumination and low percent cover of tree canopy. Moose preferred riverine flood meadows rich in herbaceous vegetation and sparse mixed forests in spring and early summer. The territory of the human-modified CFNR buffer zone was shown to contain a higher variety of food resources than the strictly protected CFNR core area.
Funder
Spanish Ministry of Science and Innovation, the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献